Hansenula polymorpha Pex20p is an oligomer that binds the peroxisomal targeting signal 2 (PTS2).
نویسندگان
چکیده
We have cloned and characterized the Hansenula polymorpha PEX20 gene. The HpPEX20 gene encodes a protein of 309 amino acids (HpPex20p) with a calculated molecular mass of approximately 35 kDa. In cells of an HpPEX20 disruption strain, PTS2 proteins were mislocalized to the cytosol, whereas PTS1 matrix protein import proceeded normally. Also, the PTS2 proteins amine oxidase and thiolase were normally assembled and active in these cells, suggesting HpPex20p is not involved in oligomerization/activation of these proteins. Localization studies revealed that HpPex20p is predominantly associated with peroxisomes. Using fluorescence correlation spectroscopy we determined the native molecular mass of purified HpPex20p and binding of a synthetic peptide containing a PTS2 sequence. The data revealed that purified HpPex20p forms oligomers, which specifically bind PTS2-containing peptides.
منابع مشابه
The Hansenula polymorpha peroxisomal targeting signal 1 receptor, Pex5p, functions as a tetramer.
We have studied Hansenula polymorpha Pex5p and Pex20p, peroxins involved in peroxisomal matrix protein import. In vitro binding experiments suggested that H. polymorpha Pex5p and Pex20p physically interact. We used single particle electron microscopy (EM) to analyze the structure of purified Pex5p and its possible association with Pex20p. Upon addition of Pex20p, a multimeric Pex20p complex was...
متن کاملThe methylotrophic yeast Hansenula polymorpha contains an inducible import pathway for peroxisomal matrix proteins with an N-terminal targeting signal (PTS2 proteins).
Two main types of peroxisomal targeting signals have been identified that reside either at the extreme C terminus (PTS1) or the N terminus (PTS2) of the protein. In the methylotrophic yeast Hansenula polymorpha the majority of peroxisomal matrix proteins are of the PTS1 type. Thus far, for H. polymorpha only amine oxidase (AMO) has been shown to contain a PTS2 type signal. In the present study ...
متن کاملPex20p of the Yeast Yarrowia lipolytica Is Required for the Oligomerization of Thiolase in the Cytosol and for Its Targeting to the Peroxisome
Pex mutants are defective in peroxisome assembly. In the pex20-1 mutant strain of the yeast Yarrowia lipolytica, the peroxisomal matrix protein thiolase is mislocalized exclusively to the cytosol, whereas the import of other peroxisomal proteins is unaffected. The PEX20 gene was isolated by functional complementation of the pex20-1 strain and encodes a protein, Pex20p, of 424 amino acids (47,27...
متن کاملMutational analysis of the N-terminal topogenic signal of watermelon glyoxysomal malate dehydrogenase using the heterologous host Hansenula polymorpha.
We have studied the significance of the N-terminal presequence of watermelon (Citrullus vulgaris) glyoxysomal malate dehydrogenase [gMDH; (S)-malate:NAD+ oxidoreductase; EC 1.1.1.37] in microbody targeting. The yeast Hansenula polymorpha was used as heterologous host for the in vivo expression of various genetically altered watermelon MDH genes, whose protein products were localized by immunocy...
متن کاملThe Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals
We describe the cloning of the Hansenula polymorpha PER1 gene and the characterization of the gene and its product, PER1p. The gene was cloned by functional complementation of a per1 mutant of H. polymorpha, which was impaired in the import of peroxisomal matrix proteins (Pim- phenotype). The DNA sequence of PER1 predicts that PER1p is a polypeptide of 650 amino acids with no significant sequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 118 Pt 15 شماره
صفحات -
تاریخ انتشار 2005